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THE EFFECT OF YIELD SURFACES ON THE LIMIT
PRESSURE OF INTERSECTING SHELLS
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Abstract-A complete solution is obtained for a rigid-plastic, cylinder-sphere intersecting shell subjected to
internal pressure. The solution is presented in such a way that it enables one to compare the limit pressure, cal
culated on the basis of the uniform Tresca yield surface which is nonlinear. with the other linearized surfaces. It is
shown that the limited-interaction yield surface, which has been used frequently, is not a good approximation for
small diameter ratios, Djd andjor thin shell where TjD is small. Some experimental evidence is also presented in
support of these conclusions.

1. INTRODUCTION

SOLUTIONS based on limit analysis of the title problem have been given by Lind [IJ, Gill [2J,
Ellyin and Sherbourne [3J and others. The salient differences among these solutions and
their shortcomings are detailed in Refs. [4, 5]. With the exception of Ref. [1 J, hexagonal yield
surface (often termed "one-moment limited-interaction") proposed by Drucker and Shield
[6J has been employed. Contrary to elastic solutions (see Ref. [7J for a summary of them), the
limit analysis approach is quite simple, and can provide a basis for rational design of
intersecting shell problems. These problems are of special interest to pressure vessel, piping,
and nuclear reactor industries.

The purpose of this paper is, (a) to present a complete solution for the cylinder-sphere
intersecting shell with uniform Tresca yield surface, (b) to formulate the problem in such a
way that it would enable one to use various yield surfaces and compare the results, and (c)
to establish the range of applicability of piecewise linear and approximate yield surfaces, in
terms of shell parameters.

2. STATEMENT AND FORMULATION OF THE PROBLEM

Consider a surface of revolution obtained by the intersection of a circular cylinder and a
spherical shell, Fig. 1, which is termed hereafter as an "intersecting shell". The shell material
is assumed to be rigid-perfectly-plastic, obeying Tresca's (maximum shearing stress) yield
criterion and associated flow rule. The state of stress at a generic point of the intersecting
shell is assumed to be two-dimensional and due to rotational symmetry, circumferential
and meridional planes are principal planes of stress. Tresca's yield condition and the
associated flow rule are summarized in Fig. 2, where subscripts (J and (cp or x) refer to
circumferential and meridional directions, respectively.

Let the intersecting shell be subjected to the normal pressure P, which is slowly increased
from zero. For sufficiently small values of P, stresses everywhere will be below the yield
stress 0'0, so that the strains are zero. In this stage, the stress distribution cannot be uniquely
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FIG. 1. Typical cross section of an intersecting shell with directional and dimensional notation.
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•FIG. 2. Tresca yield condition and flow rule for plane stress.

determined. When the pressure reaches a certain value, the intersecting shell will begin to
deform near the junction (localized region of high stress concentration). In this region the
circumferential stress (Je reaches (Jo and a small increment of pressure will result in an almost
constant circumferential stress distribution throughout the wall thickness. The meridional
stress (J(q>orx) at the outer surface and part ofwall thickness will also reach (Jo injunction. The
plastic region, however, will be forced to remain rigid as a result of constraints exerted from
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(2c)

(2a)

(2b)

the surrounding rigid portions of the intersecting shell, whereas if left to itself, it could flow
plastically. It is convenient to speak of a "hinge circle" forming in this region.

As P is further increased, the plastic region near the junction will start to grow. However,
the deformations will continue to be small until there is sufficient amount ofplasticity spread
in both directions so that the surrounding rigid portions are unable to restrain plastic
region from motion. This situation may be described by yielding taking place in meridional
plane at two additional locations. This will constitute a "mechanism" which will permit
motion of part of the intersecting shell. Collapse occurs only when the formation of the
mechanism is complete. The problem therefore, is to determine the limit pressure Po or
bounds of it.

Lower bound analysis
The equations of equilibrium with the notation of Fig. 3, for the cylindrical part are

given by:

dQx = p_ Ne (1a)
dx r

dMx
= Qx (1 b)

dx

dNx =0 (1c)
dx

whereas for the spherical part we have,

N", sin q>+Q", cos q> = !PR sin q>

N",sinq>+Nesinq>+ d~(Q",sinq» = PR sin q>

d~"'sinq>+(M",-Me)Cosq>-Q",Rsinq> = 0

Any system of moments and membrane forces which satisfies the above equilibrium
equations and the stress boundary conditions and does not violate yield condition, will
provide a lower bound on the limit load.

The foregoing discussion of the behavior ofthe intersecting shell under slowly increasing
pressure suggests that at the limit load or just before it is reached, (To is equal to (To through
out the thickness. This implies that the stress profile lies on the face of the yield surface
represented by the segment AB of Fig. 2. In the analysis to follow, body forces, dynamic
actions, thermal effects and the variation of the pressure are neglected.

Equations (1) now can be integrated by taking No = <1ot, which leads to,

(3a)

(3b)

(3c)
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FIG. 3. Elements ofcylindrical and spherical shells with notation and positive direction of forces acting on
them.

(4c)

(4a)

(4b)

where Al and Az are constants of integration. Similarly, for the spherical part Ne :::: 0'0 T*
and this will require that Me be equal to zero. Hence the integration ofequation (2) leads to

1 [R(20'0T) JN<p = "2PR + 2' ~-P qJ B1 cot qJ

R(20'0T )Q", = ~2 l?-P qJ+B1

[R(20'oT i ]M", = R 2' ~~p](qJ cot qJ-l) -B1R cot qJ+Bz cosec qJ

where B 1 and Bz are constants of integration.
The equilibrium of shear and membrane forces at the junction results in the following

identity:

P = ~ (Qo sin IX +Q,,) sec IX (5)
r

* It is not necessary that the yield stress ao ofthe both cylindrical and spherical parts be equal. One may assume
that the yield stress for the spherical part is <To = yaj) where 01> is the yield stress of the cylindrical part and y <':: 1 or
::s; 1. However for very small or great values of y, the mechanism will not be the one assumed here and it may be
confined to one part only.
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where Qo and Qa are the shear forces in cylindrical and spherical parts at the junction
respectively. These forces have to be evaluated from equations (3) and (4). For the determina
tion of four constants of integration AI, A2 , Bland B2 , the following stress boundary
conditions are assumed:

For the cylindrical part,

at x = 0, Qx = Qo, M x = M b

at x = I, Qx = 0, M x = Me·

For the spherical part,

at qJ = rt., Q'I' = Qa, M'I'=Mb

qJ = {3,
Ms M<p= Msat Q'I' = R cot {3,

(6)

(7)

where M b Me and M s are appropriate meridional moments on the yield surface. 1and fj,
may designate the location of external boundaries, which in this instance are considered as
locations of the hinge circles in the cylindrical and spherical parts respectively. It can easily
be seen, by differentiating equations (3c) and (4c) that at x = 1and qJ = {3, the meridional
bending moments are maximum at the cylindrical and spherical parts respectively. *

Evaluating constants of integration with the help of boundary conditions (6) and (7) and
then substituting for Qo and Qa in equation (5) yields:

P = (2/r){[2(Me -Mk)(a;t -p)Tsin:x+~(20';T -p)(f3-:X)+ ~Scotfj} secrt., (8a)

where

[ 2(20' 0 T )-1 ] [2 (20'0 T )-1 J'fj = rt.- 1+ R2 ~-P M k tan rt.+ 1+ R2 ~-P Ms Sill {3sec rt.

2Ms (20' 0 T ) - 1
- R 2 (1- cos (3 sec:x) ~- P cot fj, (8b)

(8c)

M o = 0,

It may be noted that equations (8) contain meridional moments Me' M k and M s and
until the present nothing has been indicated regarding their values. The values of the
meridional moments are not entirely arbitrary, and for the assumed yield condition and the
stress distribution of fully plastic section due to 0'0, a stress distribution of an element is
shown in Fig. 4. The resulting plane section of the yield surface is therefore defined by

-2 !Y('I'OrX)(l_ N('I'orx») s; M('I'orx) s; 2N ('I'orX)(1_ N('I'orx») (9)
No No Mo No No

* The shearing force Qx equals zero al the hinge location in the cylindrical part and this is evident from equation
(1 b). It is not possible to draw a similar conclusion for the shearing force Q" at the hinge location in the spherical
part, as it can be seen from equation (2c). Thus Dinno and Gill's analysis [8J is incorrect as far as the boundary
conditions for the spherical part are concerned.
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where No and M 0 are the maximum plastic moment and membrane force respectively for
each part of the intersecting shell.

T
Thickness
of the

shell
IT or t)

1
---------- --mid-plane

FIG. 4. Stress distribution in critical sections at limit pressure.

In the light of the above yield condition, the appropriate values of the meridional
bending moments appearing in the equations (8) are given by:

where

1 ( Pr )M = -Prt 1--
c 4 2aot

1 (a T ao )b = _PR 2 tan2 fJ 1- _0_ -2- tan2 fJ
2 PR P

(lOa)

(lOb)

(lOc)

However, if Hodge's two-moment limited-interaction surface [9] is chosen to represent
the yield condition in the generalized stress space, then the values of meridional bending
moments in equations (8) are given by:

(11)

Similarly for any other yield surface, the moments can easily be calculated. Of course, the
condition on the stress profile to lie on the specific portion of yield surface will impose
certain restrictions on the shell geometry, which will be discussed later.

Figure 5 shows the collapse mechanism consisting of three hinge circles. For the
cylindrical part of the shell, the velocity field is given by:

{
-wo(l-x/I) for x < Iw-- 0 for x ~ l. (l2)
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FIG. 5. The collapse mechanism consisting of three hinge circles.

Insertion of these velocities in the strain-rate-velocity relations, leads to:
for x < I

(13)

(14)

Xe = O.

du
ex = dx = 0,

. w Wo
8e = -- = -(I-x),

r rl

whereas for x ~ I all the strain-rates are obviously zero.
Similarly, for the spherical part, the associated velocities are:

u = {~R[I- cos(fJ-cp)] W = {-~R sin(fJ-cp) for

for which the corresponding strain-rates become

e~ = ~(:: -w) = 0, X~ = ~2 d~(u+~:) = 0

ee = ~(ucotCP-W) = Si:cp(COScp-cosfJ), Xe = C~2CP(U+ ::) = *cotcp

(15)

here too, the strain-rates are zero for region cp ~ f3.
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Assuming the Kirchhoff hypothesis, we may express the distribution of principal strain
rates of the shell in the form

(; (ep or x) = 8(ep or x) + X(ep or x):::· (16\

Substituting from (13) in (16), the strain-rate distribution for the cylindrical part is.

. Wo
eo = z;:(l-x), (17)

(19)

(20)

by which the corresponding state of stress is represented by segment AB of Fig. 2, through
out the thickness for the region bounded by 1 2: x 2: O. For the spherical part of the shell,
introducing strain-rates (I5) in equation (16) we obtain:

eo = ecotq>(I-cos#secq>+~) eep = O. (18)

In order to have the state of stress represented by segment AB throughout the thickness, eo,
must be positive for all values of z and q>. Thus the restriction on the geometry of the
spherical part is expressed by

TD~ 1 - cos {J sec q>

The maximum value of sec q> is less than sec {J, say equal to sec(f3 - t/J), where t/J is a small
quantity. The physical meaning of t/J is the angle subtended by hinge distribution at the
faces of the shell. The magnitude of t/J may be of order of 2TjD [10]. Thus if

T cos #
--< 1-----
D - cos #+t/J sin 13

we have M o = 0 in the region bounded by a ~ q> ~ 13, but no such restriction is apparently
imposed by the two-moment limited-interaction surface.

The velocity fields (12) and (14) show that [dwjdq>(or x)] is discontinuous at x = I,
x = 0 (or q> = a) and q> = #. This discontinuity will impose a hinge circle in these loca
tions [9]. In such locations the [dwjdq> (or x)] vary rapidly, then [d 2wjd 2 q> (or x)] must be
numerically large compared to all lower derivatives, hence the strain rate vector may have
the X(cporx) component only. This discontinuity will impose a condition on the location of
stress field. It could be easily shown that if the stress profile remains on the segment AB of
Fig. 2, the condition on the stress field is satisfied when M(cpor xl!M 0 is maximum, i.e. in the
location of hinge circles.

If the shell is to be rigid in the regions x > I, and q> > #, then a stress field can easily
be constructed to satisfy all the requirements of equilibrium, continuity, and stress bound
ary conditions. This stress field however, will not be unique, and strain-rates are zero at
these regions.

Thus, it is seen that a velocity field is found which is compatible with the stress field
through the flow rule, hence the lower bound equation (8) is a complete solution.

Upper bound

An upper bound to the limit pressure can be computed by employing the kinematic
approach. The expressions corresponding to the rate of energy dissipation per unit area of
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the middle surface will indicate that as long as I;UT/2)1 ~ leol (i.e. the condition expressed by
equation (19)), the contribution ofcurvature rate Xo is zero. Thus the procedure and formula
tion would be identical to that of Ref. [3], but with different values substituted for meridional
moments Me> Mb and Ms. However, the upper bound formulated in Ref. [3] was in fact an
exact solution within the restraints of equation (19) and hexagonal yield surface.

3. NUMERICAL RESULTS AND DISCUSSION

For the sake ofdirect comparison, the non-dimensional limit pressure calculated for the
uniform Tresca yield surface and various approximations are tabulated in Table 1. PT is

TABLE I. LIMIT PRESSURE CALCULATED BY VARIOUS YIELD SURFACES

Lower
bound
ref. [3]

D T t D PT Ps Ps PL 0.618 PL Pc Plow
- - n =-.- 1·25- - -
d T D T d 4uoTID PT PT PT PT PT PT

(1) (2) (3) (4) (5) (6) (7)

4,08* 0·50 0·006 2·09 0·268 0·91 1·14 1·40 0'87 1·04 1·33
8·38* 0·25 0·006 2·09 0·422 0'92 H5 1·33 0'82 1·02 H9

16,91* 0·12 0·006 2·04 0·677 0·94 H8 1·20 0'74 1·01 1·06
4·00 0·50 0·01 2·00 0·330 0·91 H4 1·37 0'85 1·04 1·29
8·00 0·25 0·01 2·00 0·498 0·93 1·16 1·30 0'80 1·02 1·15

16-00 0'12 0·01 2·00 0·752 0·95 1·19 H5 0·71 1·01 1·03
4·00 0·50 0·02 2·00 0·437 0·92 1·14 1·32 0'82 1·04 1·24
8·00 0·25 0·02 2·00 0·633 0·94 H7 1·22 0'76 1·02 1-09

16·00 0·12 0·02 2·00 0·857 0·97 1·21 1·08 0'67 1·01 1·01
4·00 0·75 0·01 3·00 0·383 0·91 1·14 1·39 0'86 1·07 1·34
8·00 0·37 0·01 3·00 0·519 0·93 1·16 1·30 0'80 1·03 1·17

16·00 0·19 0·01 3·00 0·758 0·95 H9 H5 0'71 \·01 1·04
4·00 0·75 0·015 3·00 0·451 0·91 1·14 1·35 0'84 1·06 1·30
8·00 0·37 0·015 3·00 0'599 0·93 1·16 1·25 0'77 1·03 1·14

16·00 0·19 0·015 3·00 0·824 0·96 1·20 HO 0'68 1·01 1·02
4·00 0·75 0·03 3·00 0'579 0·92 H5 1·28 0·79 1·05 1·23
8·00 0·37 0·03 3·00 0·734 0·94 1·18 H7 0'72 1·02 1·08

16·00 0·19 0·03 3·00 0·904 0·98 1·22 1·05 0'65 1·01 1·00
4·00 1·00 0·02 4·00 0'576 0·92 1·15 1·31 0'81 1·07 1·29
8·00 0·50 0·02 4·00 0·684 0·94 1·17 1·21 0'75 1·03 1·13

16·00 0·25 0·02 4·00 0·869 0·97 1·21 1·08 0'66 1·01 1·01

* Dimensionless parameters of experimental models of Ref. [11].

non-dimensionalized by dividing by 40'0 T/D. Other limit pressures have been normalized by
dividing by PT' Figure 6 shows plane section of the uniform Tresca yield surface (equation
9), the limited interaction (equation 11), the Sandwich approximation, and a proposed new
circumscribed surface. Let the yield condition for Tresca uniform shell be denoted by iT,
that for Tresca Sandwich shell by is, and that for two-moment limited-interaction by fL'
then the relations between them would be [9]:

is ~ iT :$; 1·25 is

Q·618iL ~ iT :$; iL
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FIG. 6. The plane face of various yield surface obtained by intersection of hyper-planes no = 1, and
mo = O.

According to bounding surface lemma, the same relationship must exist among the limit
pressures calculated on the basis of these yield conditions. Table 1, shows that this holds
true. The results indicate that the Sandwich approximation gives values of not more than
9 per cent lower than the uniform Tresca yield surface with mean deviation of - 7 per cent.
As the diameter ratio Did or the thickness to diameter ratio TID increases, the difference
decreases. For the limited interaction, the difference ranges from 40 per cent to 5 per cent
with mean deviation of, +24 per cent. Here too, the same trend with regards to Did and TID
is observed. In comparing columns 1 and 6, one notes that the difference between the limit
pressures calculated on the basis of the proposed circumscribed surface Ie and the uniform
Tresca is less than 7 per cent with mean deviation, +3 per cent. Table 1, also includes in
column 7 the values obtained from lower bound analysis of Ref. [3]. The upper bound
values are identical to those of column 4.

It seems clear from comparing columns 1,2,4 and 6, that a complete solution for one of
the yield surfaces is either a lower or upper bound for the others. It is also noted from
comparing columns 2 and 3, or columns 4 and 5, that a lower bound calculated on the
basis ofan inscribed surface, and an upper bound on a circumscribed yield surface will differ
considerably. Figure 7 shows the effect ofyield surfaces on the variation oflimit pressure for
typical TID and n ratios.

In the foregoing discussion it was implicitly assumed that uniform Tresca yield surface
represents the actual behavior ofthe material better than the other surfaces. To substantiate
this, experimental evidence is presented here. The first three rows in Table 1, marked with
asterisks, are dimensionless parameters of the models C3, C2, and C1, tested by Cloud [11 J.
These models are particularly chosen, since they have very little reinforcement at the
junction and thus are close to the theoretical configuration, Fig. 1.
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FIG. 7. The plot of limit pressure versus diameter ratio for a typical geometric configuration, calculated
on the bases of Limited-interaction, uniform Tresca, Sandwich, and a newly proposed, yield surfaces.

Figure 8 shows the plots of pressure vs. circumferential strain around the junction. The
experimental "limit pressures" obtained by 0·2 per cent offset strain, are indicated by V
shaped marks over the curves. The theoretical predictions based on uniform Tresca yield
condition, are transformed on experimental curves and are indicated by diamond-shaped
marks. The abscissa in this case has no significance. One would notice that the theoretical
marks are as well placed as the experimental ones. The yield stress is assumed to be that of
spherical shell. For model C3, the difference in the yield strength of the cylindrical and
spherical shell is about 50 per cent, whereas for the other models, it is less than 20 per cent.
In the theoretical treatment, for the sake of simplicity, it was assumed that both shells have
the same yield stress. However, if one takes the yield strength for the model C 3 , to be the
average of the yield strengths of the cylindrical and spherical parts, there wi11 be much
better agreement. The limit pressure, calculated on the basis of the limited interaction sur
face, wi11 over-estimate considerably the strength of these vessels (see Table 1 column 4).

4. CONCLUSIONS

A complete solution, in the context of limit analysis, has been obtained for a cylinder
sphere intersecting shell. It has been shown that the limited-interaction yield surface (which



724

Pressure,
psi

600

500

400

FERNAND ELLYIN

()

0.6 O.e 1.0 1.2 1.4 1.6 I.e 2.0

Circumferential strain (%)

FIG. 8. Plots of test data for circumferential strain around the junction vs. pressure (Ref. [II]). V-shaped
mark indicates experimental pressure and <>-the theoretical value based on uniform Tresca.

neglects the interaction between the moments and membrane forces) is not a good approxi
mation for the intersecting shells with small D/d and/or T/D ratios. The numerical results
indicate that satisfactory results can be obtained by simply linearizing that portion of yield
surface where the stress profile lies (the part of yield surface which coincides with stress
point domain is often obtained by physical arguments or by making use of known solutions
to similar problems). In other words, instead of attempting an over-all linearization of the
exact yield surface, one must choose from the existing approximate surfaces (or any other
newly proposed surface) the one which better approximates the portion of yield surface
where stress profile lies. For instance, for the problem posed in this paper, the Sandwich
approximation (Is), or the partial circumscribed surface Ud is a much better choice than the
limited-interaction (IL)' If the procedure outlined here regarding linearization is adopted,
not only would one obtain accurate results, but it would also result in considerable mathe
matical simplification and time saving in numerical computations in contrast to the non
linear surfaces.
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A6cTpaKT-npHBO):lHTCll nOJIHOe peweHHe ):IJIlI )KeCTKO-llJIaCTHqeCKOrO I.\HJIHH):Ipa lIJIH C!\lePbI, I.\epece
KLI,IOqI.\X 060JIOqKy, nO):laep)KeHHbIX BHyTpeHHeMy ):IaBJIeHHIO. PeweHHe npe):lCTaBJIeHO B BH):Ie, ):IalOWHM
B03MO)KHOCTb cpaBHHTb rpaHHqHOe ):IaBJIeHHe, HO):lCqHTaHHOe Ha OCHOBe nocTOllHHOH noaepXHocTli
TeKyqeCTli TpecKa (:na nOBepxHocTb HeJIHHeHHall) c ):IpyrHMH, JIliHeapH30BaHHbIMH nOBepXHOCTlIMH.
OKa3bIBaeTclI, qTO npllMoyrOJIbHOe YCJIOBHe TeKyqeCTH, 06bIqHO lICnOJIb3yeMoe, He lIBJIlIeTClI npHrO):lHbIM
npH6JIlI)KeHHeM ):IJIlI MaJIbIX OTHoweHHH ):IHaMeTpOB Did, HJIli ):IJIlI TOHKHX o60JIOqeK, r):le T/ D MaJIOe.
,l],alOTclI TaK)Ke HeKOTopble 3KcnepHMeHTaJIbHbie ):IOKa3aTeJIbCTBa ):IJIlI nO):lTBep)K):IeHHlI YKa3aHHbIX
BbIBO):lOB.


